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ABSTRACT

A necessary condition that a continuous epimorphism from a Demushkin group
G onto a finite p-group H can be factored epimorphically through a free pro
p-group S is given, which is sufficient when H is abelian of exponent pm # 2,
mdependingon G, | £ m < . In particular a free pro p-factor group S of G
can have rank at most one half rank G. Application is made to embedding
problems over local p-adic fields.

An embedding problem is shown in Fig. 1 where G is a profinite group [7,
Sect. 1], E and H are finite groups, and fand g are epimorphisms, f continuous.
From here on, we assume that all homomorphisms are continuous. A (proper)
solution is given by an epimorphism h: G — E which makes the resulting diagram
commute.

The embedding problem is of particular interest when G is the Galois group of
the algebraic closure of a field k, and H is the Galois group of a finite extension
K /k. In this paper, we let k be a local p-adic field, that is a finite extension of the
p-adic rational numbers Q,, p a rational prime. We also assume that E and H are
p groups. In this case, it is clear that we may take G to be the Galois group of the
maximal p-extension k* of k, which is a pro p-group [7, Sect. 1]. The following
proposition is due to Shafarevitch [10]. For a proof see [10] or [4].

PROPOSITION 1. An embedding problem (Fig. 1) in which G is a free pro
p-group [7, Sect. 1] of rank n > 0 has a solution if and only if rank E < n.

If k is a local p-adic field not containing the pth roots of unity, then G(k* [k)
is a free pro p-group of rank [k: @,] + 1 (see [10], [5]). In this case, Proposition 1
gives the complete picture. From now on we assume k contains the pth roots
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of unity. In this case G = G(k* [k) is not free, but its structure is well known
(see [2], [8], [6]). In particular, G can be shown to have the following properties
[6, Sect. 5]: set Hi(G) equal to the ith cohomology group of G over Z[pZ with
trivial action. Then

(i) dim H'(G) < oo (in fact = [k:Q,] + 2),

(i) dimH*G) =1,

(iii) the cup product H'(G) x H'(G)» H¥G) = Z/pZ is non degenerate.
A pro p-group G satisfying (i), (ii), and (iii) is called a Demushkin group. Thus
G(k* [k) is a Demushkin group when k contains the pth roots of unity. Condition
(i) states that G is finitely generated of rank n = rank H'(G); (ii) states that the
minimal number of defining relations of G is 1 [7, Sect. 1], that is, G is a one-
relator pro p-group of rank n. Thus there is a continuous epimorphism e: F —» G, F
a free pro p-group of rank n, such that ker (e) is the closed normal subgroup of F
generated by an element r € FP[F, F], the closed subgroup of F generated by pth
powers and commutators. The complete classification of Demushkin groups is
summarized in Proposition 2. (See [6, Th. 1, 3].)

PROPOSITION 2. Let G be a Demushkin group, F, r as above, and let q be the
largest power of p such that re FI[F,F] (p* = 0).
(i) If g # 2, there exists a basis xy, --,x, of F such that

r= xf[xl’ xz] [X3, X4] [xn—b xn]

and n is necessarily even.
(i) If ¢ = 2 and n is odd, then there is a basis xy, -+, x, of F such that

r= fo§! [xz,xs] [xa, Xs5] s [Xn—1s%s)-

(iii) If ¢ = 2 and n is even, then there is a basis xy,++,X, of F such that

r= x12+2![x1’x2] [x3’x4] [xn—l’xn] orr= Xf[xl,x23X32![X3,X4]"'[x,,_1, X,,]

where f is an integer 2 2, depending only on G.
Let G be a Demushkin group in Fig. 1. Suppose that S is a free pro p-group and
that f can be factored epimorphically through S, that is, there exist epimorphisms
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f1:G->S, f,: S~ H such that f = f, f,. It then follows from Proposition 1 that
if rank E < rank S, then there exists an epimorphism f3: S = E such that gf, = f,,
whence h=f,f; is a solution to Fig. 1. It therefore makes sense to ask when can f
be factored epimorphically through a free pro p-group S.

We will see that a necessary condition for a free pro p-group S to be a homo-
morphic image of G is that rank S < in. Moreover, a glance at the relators
r in Proposition 2 shows that this condition is also sufficient.

The main purpose of this paper is to give, in the case g # 2, a necessary condition
for an epimorphic factorization of f through S, which is also sufficient if H is
abelian of exponent g. We will also obtain some information about epimorphisms
of G onto free pro p-groups S.

1. Symplectic modales over Z,/q Z,

Let Z, denote the ring of p-adic integers, B the ring Z,/q Z,, where ¢ = Q or ¢
= p™ # 2, parational prime. Let M be a finitely generated free B module equipped
with a pairing

MxM-B
(a,b) - ab

which is bilinear, skew symmetric (ab = — ba for all a, b e M), and non singular,
(that is, the determinant of the pairing relative to a basis of M is a unit of B). Note
that if g # 2", aa = O for all ae M, and if ¢ = 2™ > 2, then aa is a multiple of 2.
A submodule N of M is called isotropic if ab =0 for all a,be N, pure if ra €N,
re B, ae M implies ra = rb for some be N. Note that N is pure if and only if
rank N = dim (N + pM)/pM, where rank denotes the minimal number of
generators. (To see this, apply the basis theorem for finitely generated Z » modules
to the pair M, N considered as Z, modules.) A symplectic basis of M is a B basis
ag, by, a, b, of M such that a;b; = 1if i = j, 0if i #, a;a; = bib; = 0 for
iSi<j=st

PROPOSITION 3. Let N be a pure isotropic submodule of M, and suppose
rank (N) = s. Then there exists a symplectic basis a,,by,---,a,,b, (s £t) of M
over B such that ay,--- a; is a basis of N. Moreover, one of the basis elements
a;eN (1 £i £5) can be prescribed.

ProoOF. Let ay,---,a, be a basis of N. Let M = M /rM, B = B[pB = Z [pZ.
The given pairing induces a pairing
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M x M- B
(d,b) »ab = ab
where a & d = a + pB is the canonical homomorphism B - B. This pairing ig
bilinear, alternating (4é = 0 for all de M) since q # 2, and non singular. Since B
is a field, M is simply an ordinary non degenerate, symplectic space, and the image
N of N in M is an s dimensional isotropic subspace of M with basis d,,--- d, over

B, since N is pure. By a known theorem on symplectic spaces [1, p. 20] d,,---, d,
can be extended to a symplectic basis

dl, 51’ e 4 bs

of a non degenerate subspace M, of M. If M # M, then M has an orthogona]
decomposition M = M, L My, so there is a symplectic basis 4 1, by41, -+, 4, b, of
the non singular subspace My. Then d;,b,,, d, b, is a symplectic basis of M.
It follows that a,, by,--+,a,, b,is a basis of M over B (also for g = 0!) such that

ab; =1 (modp) i=1,-,t
(03] a;b; = 0 (modp) for i#j
aa; =bb, =0 (modp) fori<j.

Multiply b, by a unit of B if necessary so that a;b; = 1. We already know that
a;a; =0for 1 £i,j<s If aya; = a # 0 for some i > s, ae pB, replacing a; by
a; — ab, gives a,a; = 0. The congruences (1) are unaffected by this substitution.
Similarly, replacing b; (i > 1) by a suitable b;—fb, (B e pB) gives a,;b; = 0 for
i > 1. Again (1) is unaffected. Similarly, if b;a; = y # 0 for j > 1, replace a; by
a; + ya, to obtain b,a; = 0. Note thatif j < s, a; + ya, e N and is congruent to
a; mod pM. (1) and a,a; = 0 are unaffected. Finally, if b;b; = 6 # 0 for j > 1,
replace b; by b; + da, to obtain b,b; = 0. Again (1) and a,b; = 0 are unaffected.
Setting P = Ba, + Bb,, the submodule

P'={xeM|xy =0 for all yeP}

has trivial intersection with P and contains a,,b,,---,a,, b, so that P* = Ba,
+ Bb, + -+ + Ba, + Bb,, We may now proceed inductively to arrive at the
desired basis, noting that each change cither leaves {a,, -+, a,} alone or replaces
it with another basis of N, and a, is not changed at all. Q.E.D.

CoROLLARY 4. Let N be as in Proposition2, and assume q odd. If ae M and
N + Ba is isotropic, then there is a pure isotropic submodule N’ 2 N + Ba.
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Proor. By Proposition 2, there is a symplectic basis a,, b,,--- a,, b, of M such
that a,,--,a,, s £t, is a basis of N. Clearly N* = {xeMlxN = 0} has basis
Ay, Qg Qg4 q, bgyy, o Ay by, and a € N*. We may assume a ¢ N. Write

t t
a= E (x,-ai+ Z ﬁjbp (xi,ﬂjeB.
i=1 j=s+1
Set p' = ged {o4 1,5 % Byr 15+ B}, and write a = X, oa; + p'a’. Clearly
Ba’ is pure (a’ ¢ pM), and Ba’ "N = 0, so that N’ = Ba’ @ N is pure. It is
also isotropic since a’e N*, and if q is odd, the pairing is alternate, hence
a'a’ =0.
REMARK. The only place we used g odd was to assert a’a’ = 0.

DEerINITION. Given submodules 4,4’ of M, set A4’ = {aa’laeA, a'ed'}.
AA’ is closed under multiplication by elements of B. But it is easy to see that
every such subset of B is closed under subtraction. Hence A4’ is an ideal of B.
Let A be a submodule of M, and let I'(4) be the family of all pure submodules
of M containing 4.

Set

I(4) = N{cc|CeT(4)}.
Clearly I(A) is an ideal of B.

Lemma 5. I(A) = CC for some CeI'(A). In particular, I(4) = 0 if and only
if A is contained in a pure isotropic submodule of M.

Proor. If g # 0 the assertion is obvious, since there are only finitely many
ideals in B. If ¢ = 0, M is torsion free, and by the basis theorem for finitely
generated Z, modules, there is a unique pure submodule C of M such that C = 4,
rank C = rank A, namely the submodule C such that C /A is the torsion submodul e
of M /A. Clearly I(4) = CC.

2. Demushkin groups

Let G be aDemushkin group of rank n, F a free pro p-group of rank n, G = F /R,
R the closed normal subgroup generated by an element re FP[F, F], and g, as
before, is the largest power of p such that re F/[F, F]. We define the q central
series F, by setting Fo = F, F, = Fy_,[F,_,F]forn>0.Let B=Z,/q Z, be
considered as a G module with trivial action, and let H'(G, B) denote the ith
cohomology group. Set M = H'(G, B), a free B module.
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We need the following additional facts from [6, Sect. 1,2]. The cup product
HY(G,B) x H'(G,B) - H*G,B) ~ B
is a skew symmetric, non singular, bilinear form. The transgression map
tg: H'(R, B)f - H¥(G, B)

is an isomorphism, and H'(R, B)" can be identified with Hom (R /[R, F], B). We
may therefore define a B lincar homomorphism

7 H¥G,B)> B
by

Fa) = (tg~'a)(r™").

f is an isomorphism, and we therefore write y U x’ to mean #(y U ¢’) from now
on, x,x' € M. Suppose g # 0. Let s be an element of F such that s?=r (mod
[F,F]). Since F [[F, F] is free abelian pro p, s is uniquely determined mod [F, F].
Let e: F — G be a fixed epimorphism with kernel R, and set ¢ = e(s).

Now since the cup product M x M — B is bilinear and non singular, it induces a

canonical isomorphism M - G /G, (G, = G*[G, G]) as follows. Let ye M. Then
the mapping

inog Uy

belongs to Homg(M,B). Since M = H'(G,B) is canonically isomorphic to
Hom(G, B), Homg(M, B) is the second dual of G /G, hence canonically isomor-
phic to G/G,. Therefore x is mapped canonically onto the element 7e G /G,
corresponding to x*, namely that element 7 of G/G, such that Uy = 5(?) for
every neM. (Note H'G,B)= H'(G|G,,B) canonically.) Under this cor-
respondence, we set y, equal to that element of M which corresponds to &, where &
is the image of ¢ in G/G,. Thus for all e M, n(o) = 5 Uy,.

LemMA 6. (Demushkin.) Let y,,---,x, be a basis of M such that x5, U xa
=1for 1 £i<in, and x; Uy; = 0 for i <j otherwise. If g # 0, suppose also
that y, = y,. Let 6,,++-,0, be a basis of G dual to yy, -, x,, that is, x{o) = oy,
1=4i,j<n,and let xy --+,x, be a basis of F such that e(x;) = 6,1 £ i < n.

Then r = x{ [x{,%x5] -+ [Xp=15%,] (mod F,).

ProOF. We base the proof on [6]. We may write

r

n
[T xI1 [xoxJ" (mod Fy), ayay;eB.
i=1

i<j
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To see this, first observe that r has a unique expression []-, x!*(mod[F, F]),
a;e Z,,sincere Fy = F/[F,F]. Hence r = [[/L, x[*" ¢, ce [F, F]. By well-known
commutator identities [3, p. 150] (which are valid also for topological groups),
the set {[x;x;]:1 £i<j<n} forms a basis of the free Z, module [F,F]/
[[F,F],F]. Hence

r l:[l x" T1 [xx,]% (mod[[F,F],F]); a;,a,€ Z,,

i<j
Since [[F,F],F] € F,, reducing the last expression mod F, yields the same
expression with the a; and a;; reduced mod 4.
By [6, Prop. 3], we have

a; = x; Yy; for i <j.

Therefore

—a

2 r= x, " [xy, %] [%3, %]+ [Xn- 1, X,] (mod Fy).

1

3
If ¢ = 0 we are finished. We now assume g # 0. It suffices to show that
r = xJ (mod F,[F,F] = FV[F,F]),
since (2) becomes r = [[{=4 x{*(mod F,[F,F]).
If we can show that s = x, (mod F,), then

x;s"'eF,, (x;s ) eF! < FYF,F],

hence
(™) = x4570= 1 (mod FI[F, F)),
and
x!=s"=r (mod F{[F,F)),
as desired.

Now s = x, (mod F,) if and only if ¢ = ¢, (mod G,), since e(s) = o, e(x,) = 0,.
Further, 6 = ¢, (mod G,) if and only if n(¢) = 5(s,) for all e M. By definition
of x,, we have n(6) = n Uy, for every ne M. For n = y;, we have

1wo) = YV, = 6, = yay), i =1,---,n since x, = ;-
Therefore (o) = n(o,) for every ne M. Q.E.D.

Now .et f: G— H be an epimorphism, H a finite p group. f induces a mono-
morphism
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f*:H'(H,B)- H'(G, B).

Set A = image (f*) + By, if ¢ #0, A = image (f*) if ¢ = 0. 4 is a submodule

of M, and the invariant I(A) is defined (see Section 1).

THEOREM 7. Let q # 2. A necessary condition that f admit an epimorphic
factorization

G- —
“ 7ont

through a free pro p-group S is that rank H < %n and I(A) = 0. If H is abelian
of exponent q, then the condition I(A) = 0 is also sufficient.

Proor. First assume that f admits an epimorphic factorization (4). We have a
commutative diagram shown in Fig. 2 where f} f**are induced by f, and U

H'(S,B) xH'(S,B) % H¥S,B)=0

gy f

H'(G,8) xH'(G,B) % H¥(G,B)
Fig. 2

denotes the cup product. H(S,B) = 0 since S is free, hence the submodule
image(f) of H'(G,B)=M is isotropic. Furthermore, N = image (f}) is pure in
M. This follows from the commutative diagram shown in Fig. 3, from the in-
jectivity of the horizontal arrows, and from the surjectivity of the vertical arrows
(using the criterion preceding Proposition 3). Since N is isotropic, we apply
Proposition 3 and obtain rank H < rank N £ 4n, since M is non singular. This
argument shows that if a free pro p-group S is a homomorphic image of G, then
rank S < in. (This holds even for g = 2.) If ¢ = 0, then I(4) = 0. We now assume
q #0.

Let o be the same as before, so that ¢? = 1 (mod [G, G]). Then since S/[S, S]

f‘-
H'(S,B) ———+ H'(G,B) = M

l !

! ~
H(S,Zy/pZp) ——= H'(6,Z,/pZ)=M/pM

Fig. 3
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is torsion free, f,(d) = 1 (mod [S, S]), so that if ne H'(S, B) and x= f,*(n), then
x0) = 0. Since x(o) = x Uy, for every ye M, it follows that y Uy, = 0 for
every x€ N, whence N + By, is isotropic. If g is odd, then by Corollary 4, it is
contained in a pure isotropic submodule N’ of M. If g = 2™, m x 2, it is necessary
to verify this separately. We may assume y,¢ N. By Proposition 3, there is a
basis xy, X, of M such that x5, Uy, =1for 1Sisdn, Uy, =0 for

i < j otherwise, and x,, X4 ***, X2 § < 4, is a basis of N. Then as in the proof
of Corollary 4,

IVl = E BXZ! + Z BX;‘-

i=1 i=2s5+1

Since YEN Xe = Xo+ 1, Xo€N, 0#n= X by, beB.
i=2s+1

Write
n= b”,’ b=2= ng{b2s+1"" bn}’

so that e N*and N’ = N + Bp’ is pure. To show that N’ is isotropic it suffices
to show 7 Uz’ = 0. By the corollary to [6, Prop. 3],

Y= (g)x(a)

for every y € M. In particular x, U x, = (5) x,(6). On the other hand, y U x, = x(0)
for every xe M, so setting ¥ = X, Xs Y X = X,(0). Hence ((§) —1) x,(6) =0,
whence x,(¢) = 0. Let g/,-+:,%, be a basis of M such that y{(6)= J,,. (Such a
basis exists since we extend o to a basis of G and take the dual basis.) Then

ot={1reM|x(0) = 0} = By, + - + By,.
We know that N € ¢* and y, e o™ It follows that n = by’ = y, — g, € 6* whence
the coeffcient ¢, of x, in the expression 4’ = X[, ¢;x; satisfies b, = 0 since
by'(e) = bey, = 0.
Since b # 0, ¢, € 2B. But then
n n q q
mon' = X V=X e (2) 1io) = ci(z) =0.

(The first equality holds since e;c;x/ Uy + ¢jc; 2/ V"= 0.) Thus N + By, is
contained in a pure isotropic submodule N’ of M.
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Now f,: S — H induces a monomorphism f3: H'(H, B) - H!(S, B) and
A = image f* + By,
= image f1'fS + By,
€ N+ By,
c N’
Hence I(4) = 0. (Note that this part of the theorem is valid for H a pro p-group.)
Conversely, suppose I(4) = 0. Then by Lemma 5, A is contained in a pure
isotropic submodule N’ of M. By Proposition 3, there is a basis y; -+, x, of M
such that yp;- Uyy =1 for 1<i<4n, Uy, =0 for i <j otherwise, x,,
Xas "+ X2s is a basis of N, s < 4n and y, = g, if ¢ # 0. By virtue of Burnside’s

basis theorem, let 64, -+ g, be a basis of G dual to y; «-+, ¥x,, X, -+ X, a basis of F
such that e(x;) = o; for 1 <i < n as above. Then by Lemma 6,

r = x4 [x1,5,] - [Xa-1,%,] (mOdFy).
We now proceed exactly as in proof [6, Th. 3]: suppose

r=xi [x5,%,] [%p-15%,] (mod F)) j 2 2.
By [6, Prop. 5], there exist t,, -, t, € F;_; such that

r= y‘i[yi,h] "'[yn—byn] (mOde+1)
where

yi=xtrt1gign

Passing to the limit, we obtain a new basis of F, which we also denote by x, -+, X,»
such that

@ r=x{[x,x] [%0-1, %]

(ii) the new o; = e(x;) are still dual to y,,-- x,. (At each step, y; = x; (mod
Fy).)

We now produce the factorization of f. Let yy, -+, y,, be a basis of S and define
fi:F—>S by

Jixai-1) = 1, fi(xz) = yi, LSi< .

Then fi(r) = 1, and f; induces an epimorphism f;: G — S satisfying f; = fie.

Define f,: S—+ H by

L0 = f(o2), 1gigin,
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Now for

12igdn, f,fi(0,) = fifie(x) = fof1(x2) = H,(3) = f(a,),

and

f2i1(02i-1) = [2fi(%2,-)) = (1) = 1.

It follows that f = f,f, if and only if f(6,,_,) = 1 for 1 £i < in. If H is abelian
of exponent ¢, then an element te H is equal to 1 if y'(r) = 0 forall x'e
Hom g(H, B). For t = f(0,;-,), this condition amounts to

f*H'(H,B) < X {By;|j #2i — 1}
since

xf(e") = f*) (") for o’ €G.
If wenow leti = 1,.--,4n, then f = f, f, if and only if

S*H'(H,B) = X{By;|1 i< in}.
But this is true since
f*H'(H,B) = image f*S A< N'c X{By, |1 <i<in}, QED.

RemARk. If G is the Galois group of the maximal p-extension k* of a local
p-adic field k containing the pth roots of unity, and K is the fixed field of ker(f),
then I(A) is an arithmetic invariant of K. Namely, if K is abelian of exponent g
(if not, replace K/k by the maximal abelian subextension K’ /k of exponent q)
then by Kummer theory, K = k(D'/7), where D is a subgroup of k* (multiplicative
group of k) containing k*¢ and D'/ is the set of all gth roots of elements of D.
Note that g is the highest power of p such that k contains the gth roots of unity
[6, Sect. 5]. We may as well replace D by D /k *%and write D = J = k [k*? Each
aeJ determines a character

1.t G = W = gth roots of unity,
as follows. Set
20) = o(a'M) [a' P e W.

If we fix an isomorphism between W and the additive group B = Z,/qZ,, then
a+y, is an isomorphism between J and M = H'(G,B). Furthermore, if
H = G(K/k) and f:G— H is the restriction map, then H!(H,B)~ D and
f*: H'(H B)- H'(G, B) corresponds to the inclusion D — J. Still further, the
cup product M x M — B corresponds to the gth power norm residue symbol
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J x J - W [9, Chap. XIV]. Now since ¢ generates the torsion part of G/[G,G], ¢
corresponds to some generator { of W< k under the reciprocity isomorphism.
Finally, g, is identified with x, relative to a suitable identification between W
and B. To see this, we assume an arbitrary identification between W and B and
show that By, = By,. Let x;,--,x, be the basis of M of Lemma 6, and let
4y, a,€k* such that y; = y,, 1 £i < n. Since y, = y,, by assumption, and
X; has order g, it suffices to show that y, Uy, = 0 for 2 <i < n, since then
2 = X3 = 14 sothat By, = By,. Now y, Uy; = O<>{isa norm from k(a/*)<s{
is in the kernel of the reciprocity map of the extension k(a;/%)<> o acts trivially on
k(a}'®). (The reciprocity map commutes with the restriction K — k(a}’?)) <> (o)
= 0«2 <i £ nsince 6 = o, (mod [G,G].)

Thus A = image f* + By, corresponds to the subgroup DW of J = k* [k*9,
and the condition I(4) = 0 means that DW is contained in a pure isotropic
submodule of J (with respect to the gth power norm residue symbol).

We conclude with a remark on epimorphisms of G onto a free pro p-group S of
rank < in. As we noted in the proof of Theorem 7, the existence of such an
epimorphism implies rank S < {n. If we denote G/G,, S/S, by G, @ respec-
tively, an epimorphism h: G — S induces an epimorphism h’': G® - S, since
h(G,) = S,. If rank S = in, and if ¢, 0, is a basis of G¥ satisfying
oilo, ;] [6,-1,0,] =1, and y; -, y,, is a basis of S, then any mapping
which sends o,;_, into S, /S;, 6,; onto y,, for 1 < i < 4n, defines an epimorphism
of G onto S?, since the left side of the relation on ¢, 0, collapses to 1
under the mapping.

THEOREM 8. Let S be a free pro p-group, g: G — S® an epimorphism. Then
rank S<4n. If rank S=1n, then there exists a basis a,,+-,0, of G'? satisfying
oi[oy,6,]+[0,-1,0,] =1 and a basis y,, -+, y;, of S¥ such that g(ay-,)
€S,/S; and g(o3) = y, for 1 Si < in.

Proor. Consider the diagram shown in Fig. 4 in which the vertical arrows are
canonical and ¢® is induced by e. The map from F onto S'® defined by the

h
pTT oo -
F—& .6 S
l (2) l l
F(2) e G(Z) g S(Z)
Fig. 4
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diagram can be factored epimorphically through S; because a set of free generators
of F map onto a set of generators of S, Using the Burnside basis theorem, it is
easy to check that the preimages of these generators in S generate S, hence we can
use them as images of the generators of F in defining the desired epimorphism
h: F - S. By commutativity of the diagram, h(RF,) € §,.

Consider next the commutative diagram shown in Fig. 5 in which all the tg are
isomorphisms (by Hochschild-Serre; for example the first tg is part of the
Hochschild-Serre exact sequence

1(S(2) B)— H'(S,B)~ H" (SZ,B) H (S(2) B) - H? (S,B) =0,

in which the first arrow is an isomorphism, and the second and last are zero). h*
is induced by h and is well defined since h[RF,,F] < [S,, S].

H'(S,8° —"— H'(RE,B)F —H'(RB)

Pk
H (8(2) __g:: H (G(Z) HZ(G,B)

Fig. 5§

Now to cup products. Consider the commutative diagram shown in Fig. 6
where 7(a) = tg~(a) (r~') for a e H*(G, B), and similarly for the first two rows.

1(5(2) (2) B) Yen (8(2) g) ), hir) B
g xg,, lg*n l
H(G,B) x H'(G,B) —Y~H¥GB) —— B

Fig. 6

Since h(r)e S,, h(r) = 0. We may now extract the following information: the
image of N of H'(S*®,B) in M = H'(G, B) is an isotropic submodule of M; it is
also pure, as in the proof of Theorem 7. Since N has rank 4n (Proposition 3)
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N* = {yeM|yun =0 for all neN} = N,

where y U n again denotes the image 7(y Un) of x Un in B.
Now if g # 0, let o, x, be defined as above. Exactly as in the proof of Theorem 7,
we have

x(0) = xUy, =0 for xeN, y,e N* = N.

By Proposition 2, there is a basis yy,++, %, of M such that y,;.; Ux,; = 1 for
lsisin, Yy =0fori<jotherwise, x, = y,if ¢ #0, and x, X4, ***s Xa IS 2
basis of N. Choose a basis o,,-:,6, of G? dual to y,,, ¥, By Lemma 6,
oilo1,0,] - [04-1,0,] = 1. Set y; = g(02), L Si<4n, and let ny,--,1y, be
the basis of H'(S'®, B) dual to y,,-,ys,. Then g*(n)(o;) = n9(c;) = 5;,5
for 1<j<n, 1<i<1in, hence g*(n) = x5, 1 Si<in. yeS@ belongs to
S, /S, if and only if #(y) = O for every ne H'(S?, B). (It is clear that 5(S, /S;) = 0
for every #n, and given yeS®, y has a unique expression [[}, yi -z,
z2€S,/S;,a;€ B, henceif y¢ S, /S,, some a; # 0, s0 n,(y) = a; # 0.) It follows that
g(021-1)€S, /S, for 1 i< 4n; since 19(02i-1) = (g*ﬂj)(UZi-l) = 12/(02i-1)
=0for 15i, j<in. Q.E.D.

ReMARK. If rank S < 4n, the situation is a bit more complicated. It can be
verified that if rank S = s < 4n, then a necessary and sufficient condition that
there is a basis ¢y,++,0, of G® satisfying ¢{[0,,0,] - [6,-1,0,] =1 and a
basis y,, -+, y, of S such that

g(65-1)€S /Sy for 1 £iS4n, g(oy) = y;for1 i s,

and
9(6,) €S, ]S, for s+1Li<in,
is that
g*H'(S®,B) N By,
is either 0 or all of By,.
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