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ABSTRACT 

A necessary condition that a continuous epimorphism from a Demushkin group 
G onto a finitep-group Hcan be factored epimorphically through a free pro 
p-group S is given, which is sufficient when H is abelian of exponent pm ~ 2, 
m depending on G, 1 < m < oo. In particular a free pro p-factor group S of G 
can have rank at most one half rank G. Application is made to embedding 
problems over local p-adic fields. 

An embedding problem is shown in Fig. 1 where G is a profinite group [7, 

Sect. 1], E and H.are finite groups, and f and # are epimorphisms, f continuous. 

From here on, we assume that all homomorphisms are continuous. A (proper) 

solution is given by an epimorphism h �9 G ~ E which makes the resulting diagram 

commute. 

The embedding problem is of  particular interest when G is the Galois group of 

the algebraic closure of  a field k, and H is the Galois group of a finite extension 

K [k. In this paper, we let k be a local p-adic field, that is a finite extension of the 

p-adic rational numbers Qp, p a rational prime. We also assume that E and H are 

p groups. In this case, it is clear that we may take G to be the Galois group of  the 

maximal p-extension k* of k, which is a pro p-group [7, Sect. 1]. The following 

proposition is due to Shafarevitch [10]. For  a proof  see [10] or [4]. 

PROPOSmON 1. An embedding problem (Fig. 1) in which G is a free pro 

p-group [7, Sect. 1] of rank n > 0 has a solution if and only if rank E ~ n. 

If  k is a local p-adic field not containing the pth roots of unity, then G(k*/k) 

is a free pro p-group of rank [k: Q~] + 1 (see [10], [5]). In this case, Proposition 1 

gives the complete picture. From now on we assume k contains the pth roots 
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G 

E-- H 

Fig. 1 

of unity. In this case G = G(k*/k) is not free, but its structure is well known 

(see [2], [8], [6]). In particular, G can be shown to have the following properties 

[6, Sect. 5]: set HI(G) equal to the ith cohomology group of G over Z/pZ with 

trivial action. Then 

(i) d imnl (G)  < oo (in fact = [k: Qp] + 2), 

(ii) d imH2(G)=  1, 

(iii) the cup product H i ( G ) x  HI(G)~H2(G)_~ 7./pZ is non degenerate. 

A pro p-group G satisfying (i), (ii), and (iii) is called a Demushkin group. Thus 

G(k*/k) is a Demushkin group when k contains the pth roots of  unity. Condition 

(i) states that G is finitely generated of rank n = rank Hi(G); (ii) states that the 

minimal number of defining relations of G is 1 I7, Sect. 1], that is, G is a one- 

relator pro p-group of rank n. Thus there is a continuous epimorphism e: F ~ G, F 

a free pro p-group of rank n, such that ker (e) is the closed normal subgroup of F 

generated by an element r e FP1'F, F], the closed subgroup of F generated by pth 

powers and commutators. The complete classification of Demushkin groups is 

summarized in Proposition 2. (See 1'6, Th. 1, 3].) 

PROPOSITION 2. Let G be a Demushkin group, F, r as above, and let q be the 

largest power of p such that r e F~[F, F] (p ~o = 0). 

O) I f  q ~ 2, there exists a basis x l , . . . ,  x ,  of F such that 

r = x~[x,,  x2] Ix3, x4] '"  [x ._, ,  x.]  

and n is necessarily even. 

(ii) I f  q = 2 and n is odd, then there is a basis Xl, "",xn o f f  such that 

2 2!  
r = X I X  2 [X2, X3][X4, Xs]'"1-Xn-I,Xn]. 

(iii) I f  q = 2 and n is even, then there is a basis Xl, . . . , x ,  o f f  such that 

r = x~2+2'1-Xl, Xz][xa, x , ] ' "1-x , -1 ,x , ]  or r= X~LXl,X2]X~t'1-x3, x4]...[xn_l, Xn] 

where f is an integer > 2, depending only on G. 

Let G be a Demushkin group in Fig. 1. Suppose that S is a free pro p-group and 

that f c a n  be factored epimorphically through S, that is, there exist epimorphisms 
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f l  : G -~ S, ./'2 : S ~ H such that f = f2f l .  It then follows from Proposition 1 that 

if rank E =< rank S, then there exists an epimorphismf3 : S ~ E such that #f3 = f2, 

whence h =fafl  is a solution to Fig. I. It therefore makes sense to ask when can f 

be factored epimorphically through a free pro p-group S. 

We will see that a necessary condition for a free pro p-group S to be a homo- 

morphic image of G is that rank S < �89 Moreover, a glance at the relators 

r in Proposition 2 shows that this condition is also sufficient. 

The main purpose of this paper is to give, in the case q # 2, a necessary condition 

for an epimorphic factorization of f through S, which is also sufficient if H is 

abelian of exponent q. We will also obtain some information about epimorphisms 

of G onto free pro p-groups S. 

1. Sy,nplectie modales over 7_p/q Zp 

Let 7_p denote the ring of p-adic integers, B the ring Zp/q Zp, where q = 0 or q 

=pm # 2, p a rational prime. Let M be a finitely generated free B module equipped 

with a pairing 

M x M ~ B  

(a,b) ~ a b  

which is bilinear, skew symmetric (ab = - ba for all a, b e M), and non singular, 

(that is, the determinant of the pairing relative to a basis of M is a unit of B). Note 

that if q ~ 2 m, aa = 0 for all a e M, and if q = 2 m > 2, then aa is a multiple of 2. 

A submodule N of M is called isotropic if ab =0  for all a, b ~ N, pure if ra ~ N,  

r ~ B, a e M implies ra = rb for some b ~ N. Note that N is pure if and only if 

rank N = dim (N + pM)/pM,  where rank denotes the minimal number of 

generators. (To see this, apply the basis theorem for finitely generated Zp modules 

to the pair M, N considered as Zp modules.) A symplectic basis of M is a B basis 

al, bl, .",at,  bt of M such that aib j = 1 if i = j ,  0 if i ~ j ,  a~ay = bibj = 0 for 

i < i < j < = t .  

PROPOSITION 3. Let N be a pure isotropir submodule of M, and suppose 

rank (N) = s. Then there exists a symplectic basis a l , b l , . . . , a , b  t (s <= t) of M 

over B such that a 1, ... a s is a basis of N. Moreover, one of the basis elements 

a s~ N (1 < i <_ s) can be prescribed. 

PROOF. Let al,  "",as be a basis of N. Let ~I = M/FM,  n = B/pB ~- Z/pZ.  

The given pairing induces a pairing 
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x B 

(a,b) = 

where a ~ e~ = a + pB is the canonical homomorphism B --, B. This pairing is 

bilinear, alternating (e/e/= 0 for all e/e ~r since q :/: 2, and non singular. Since B 

is a field, ~r is simply an ordinary non degenerate, symplectic space, and the image 

of N in 3~ is an s dimensional isotropic subspace of ~t  with basis e/~, ... e/~ over 

B, since N is pure. By a known theorem on symplectic spaces [1, p. 20] e/~, ..., e/~ 

can be extended to a symplectic basis 

e/, ,bt , '"  r  

of a non degenerate subspace _~r I of ~ .  If  ~r # _~rx, then ~ has an orthogona 1 

decomposition 3~t = 3~r t / ~ ,  so there is a symplectic basis a'~+ t, b~+ 1 , ' " ,  a't, bt of 

the non singular subspace ~tiL. Then e/~,/ij, ..., e/~, bt is a symplectic basis of ~t. 

It follows that at,  bt, "", at, b, is a basis of M over B (also for q = 0!) such that 

(1) 

aibi = 1 (modp)  i =  1, . . . , t  

a~bj=- 0 (modp) for i # j  

a,aj =- bibj = 0 (modp) for i < j .  

Multiply bt by a unit of B if necessary so that atbt = 1. We already know that 

aiaj = 0 for 1 < i, j < s. If  ata i = ct # 0 for some i > s, ct ~ pB, replacing as by 

ai - ~bt gives ala~ = 0. The congruences (1) are unaffected by this substitution. 

Similarly, replacing bi (i > 1) by a suitable hi - f ib  t ( f l~pB) gives atb~ = 0 for 

i > 1. Again (1) is unaffected. Similarly, if bta J = y ~ 0 for j > 1, replace aj by 

a i + ~a t to obtain bla j = 0. Note that i f j  < s, a I + ~a t ~ N and is congruent to 

a i rood pM. (1) and alaj = 0 are unaffected. Finally, if btb J = c5 ~ 0 for j > 1, 

replace bj by bj + tsar to obtain btbj = 0. Again (1) and atbj = 0 are unaffected. 

Setting P = Ba~ + Bbt,  the submodule 

P ' =  { x ~ M [ x y = O  for all y ~ P }  

has trivial intersection with P and contains a2, b2,..',at, bt, so that P J-= Ba2 

+ Bb2 + .." + Ba~ + Bbt. We may now proceed inductively to arrive at the 

desired basis, noting that each change either leaves (at ,  ..., a,} alone or replaces 

it with another basis of N, and at  is not changed at all. Q.E.D. 

COROLLARY 4. Let N be as in Proposition 2, and assume q odd. I f  a ~ M and 

N + Ba is isotropic, then there is a pure isotropic submodule N '  ~ N + Ba. 
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PROOF. By Proposition 2, there is a symplectic basis al, b:, ... at, bt of M such 

that al ,  ." ,  as, s < t, is a basis of N. Clearly N • = {x ~ M I xN = 0} has basis 

al, "", as, as+ 1, bs+ l ,""  at, bt, and a ~ N -L. We may assume a ~ N. Write 

t t 

a =  ]~ ctia i +  ~ fljbj, ~t, f l j~B.  
i =1  j = s + l  

Set p~= gcd{~s+l,"',~,, fls+l,'",fl,}, and write a = E~=I ~at +pZa'. Clearly 
Ba' is pure (a'q~pM), and Ba' n N  = 0, so that N'  = Ba' ~ N  is pure. It is 

also isotropic since a ' ~  N l ,  and if q is odd, the pairing is alternate, hence 

a'a'  = O. 

REMAgK. The only place we used q odd was to assert a'a'  = O. 

DEFINITION. Given submodules A, A' of M, set AA'  = {aa' [ a ~ A, a' ~ A'}.  

AA '  is closed under multiplication by elements of B. But it is easy to see that 

every such subset of B is closed under subtraction. Hence AA'  is an ideal of B. 

Let A be a submodule of M, and let F(A) be the family of all pure submodules 

of M containing A. 

Set 

I(A) = VI {CC] C ~ F(A)}. 

Clearly I(A) is an ideal of B. 

LEMMA 5. I(A) = CC for  some C~F(A).  In particular, I(A) = 0 if and only 

if A is contained in a pure isotropic submodule of M. 

PROOF. If  q ~ 0 the assertion is obvious, since there are only finitely many 

ideals in B. If q = O, M is torsion free, and by the basis theorem for finitely 

generated Zp modules, there is a unique pure submodule C of M such that C _ A, 

rank C = rank A, namely the submodule C such that C/A  is the torsion submodul e 

of M / A .  Clearly I(A) = CC. 

2. Demushldn groups 

Let G be aDemushkin group of rank n, F a free pro p-group of rank n, G ~- F /R ,  

R the closed normal subgroup generated by an element r e FP[F, F], and q, as 

before, is the largest power of p such that r ~ Fq[F, F]. We define the q central 

series F,  by setting F o = F, F, = F~_ 1 [F ,_ I ,F  ] for n > 0. Let B = Zp/q Zq be 

considered as a G module with trivial action, and let H~(G, B) denote the ith 

cohomology group. Set M = Hx(G,B), a free B module. 
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We need the following additional facts from [6, Sect. 1,2]. The cup product 

HI(G, B) x H1(G, B) ~ H2(G, B) ~- B 

is a skew symmetric, non singular, bilinear form. The transgression map 

tg: Hi(R,  B) ~ ~ H2(G, B) 

is an isomorphism, and Ht(R,  B) F can be identified with H o m ( R / [ R ,  F], 13). We 

may therefore define a B linear homomorphism 

~: HZ(G, B) -~ B 

by 

f(a) = (tg- l a) ( r -  1). 

is an isomorphism, and we therefore write Z td X' to mean ~(X w X') from now 

on, X,X' ~ M. Suppose q 4 0. Let s be an element of  F such that s q = r (mod 

[F, F]). Since F / [F, F]  is free abelian pro p, s is uniquely determined mod [F, F]. 

Let e: F ~ G be a fixed epimorphism with kernel R, and set a = e(s). 

Now since the cup product M x M ~ B is bilinear and non singular, it induces a 

canonical isomorphism M ~ G/G 1 (G1 = Gq[G, G]) as follows. Let Z e M. Then 
the mapping 

belongs to Homs(M,B). Since M = HI(G,B) is canonically isomorphic to 

HomB(G, B), HomB(M, B) is the second dual of G/GI, hence canonically isomor- 

phic to G/Gr Therefore Z is mapped canonically onto the clement ~eG/G I 
corresponding to X*, namely that element ~ of G/Gl such that r / u  Z = r/(~) for 

every r / eM.  (Note HI(G,B) -~HI (G/Ga ,B)  canonically.) Under this cor- 

respondence, we set Z, equal to that element of M which corresponds to ~, where 

is the image of  a in G/GI. Thus for all ~/e M, ~/(cr) = ~/U X,. 

LE~MA 6. (Demushkin.) Let ZI, "",gn be a basis of  M such that X2~-1 U Zzi 

= 1 for  1 < i < �89 and g~ tdZj = 0 for i < j  otherwise. I f  q ~ O, suppose also 

that X2 = Z,. Let al, "",an be a basis of G dual to Xi, "",gn, that is, g,(a#) = 6,j, 

1 < i , j  < n, and let xl  "",xn be a basis o f F  such that e(xi) = al, 1 < i < n. 

Then r = x~ [xl ,xz]  ... [xn- l ,x , ]  (mod Fz). 

PROOF. We base the proof on [6]. We may write 

r = ~I xra'I-I [x,,xj]~'J(modF~), a , , a , ~ B .  
i = 1 l < j  
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To see this, first observe that  r has a unique expression Ii~'=l x~"'(mod[F,F]), 
ai e 2rp, since r ~ F t  = Fq[F, F]. Hence r = ~ =  1 x~"" c, c ~ [F, F]. By well-known 

commuta to r  identities [3, p. 1501 (which are valid also for topological groups), 

the set {[xi, x j ] :  1 < i < j < n }  forms a basis of  the free 7/p module  [F,F]/  

[ IF ,  F] ,  F] .  Hence 

r - ~ xT" I-I [x,,xj] ~ (mod[[F,F],F])j a,,aij~Z p. 
i = l t  i<j  

Since [[F,F],F] ~_ F2, reducing the last expression mod F2 yields the same 

expression with the a~ and a~j reduced mod q. 

By [-6, Prop.  3], we have 

Therefore  

(2) 

a o = x ~ U X i  for i < j .  

r = [ I  x, "~' [x l ,  x2] [xz, x4] ... [ x , _ , ,  x , ]  (mod F2). 
1 : 1  

If  q = 0 we are finished. We now assume q # 0. It suffices to show that  

r - ( m o d F : [ F , F ]  = r'[F,e]), 
since (2) becomes r = 1-I7= 1 x~~ rood F2[F, F]).  

If  we can show that  s = x:  (mod F~), then 

xls-l Fl, (XlS-l)"EF  

hence 

and 

(xls- l)q __ x~ s -q = 1 (mod F~[F, F]),  

x~ - s q - r (rood F~[F,F]), 

as desired. 

Now s - xl  (mod FI)  if and only if a - tr I (mod GI), since e(s) = cz, e(xL) = txl. 

Further ,  tr - tr I (mod GI) if and only if ~/(~) = t/(al) for  all ~/E M. By definition 

of  Z~, we have ~/(a) = r/~) X~ for every r/e M. For  r / =  Zi, we have 

X~(a) = X, W X~ = 61, = Zi(ai), i = 1, ..., n since X~ = X2- 

Therefore  r/(a) = ~/(al) for every r/~ M. Q.E.D.  

Now ,et f :  G ~ H be an epimorphism, H a finite p group,  f induces a mono-  

morphism 
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f* :  Hi(H, B) ~ HI(G, B). 

Set A = image (f*) + BX, if q # 0, A = image (J*) if q = 0. A is a submodule 

of M, and the invariant I(A) is defined (see Section 1). 

Let q ~ 2. A necessary condition that f admit an epimorphic 

Sy-; . 

through a free pro p-group S is that rank H < �89 and I(A) = O. I f  H is abelian 

of exponent q, then the condition I(A) = 0 is also sufficient. 

PROOF. First assume that f admits an epimorphic factorization (4). We have a 

commutative diagram shown in Fig. 2 where ] *  f**are  induced by f l  and u 

HI(S,B) xHt(S,B) ~ HZ(s,B)=0 

Ht(G,B) xHI(G,B) u_.. HZ(G,B) 
Fig. 2 

denotes the cup product. H2(S,B)= 0 since S is free, hence the submodule 

image(f*) of HI(G,B)=M is isotropic. Furthermore, N = image ( f*) is  pure in 

M. This follows from the commutative diagram shown in Fig. 3, from the in- 

jectivity of the horizontal arrows, and from the surjectivity of the vertical arrows 

(using the criterion preceding Proposition 3). Since N is isotropic, we apply 

Proposition 3 and obtain rankH ~ rankN < �89 since M is non singular. This 

argument shows that if a free pro p-group S is a homomorphic image of G, then 

rank S ~ �89 (This holds even for q = 2.) If q = 0, then I(A) = 0. We now assume 

q ~ O .  

Let ~ be the same as before, so that aq -= 1 (rood [G, G]). Then since S/ IS ,  S] 

H'(S,B) fl* ,. H'(G,B) = M 

,1 1 
H (S,Zp/pZp) H ~ (G,Zp/p 77p)=- M/pM 

Fig. 3 
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is torsion free, f l ( a )  = 1 (rood IS, S]), so that if r/e Hi(S ,  13) and X = ]t*(r/), then 

X(a) = 0. Since ~ ( a ) =  X u X~ for every X e M, it follows that X u xo = 0 for 

every X e N, whence N + BZ, is isotropic. If q is odd, then by Corollary 4, it is 

contained in a pure isotropic submodule N' of M. If  q = 2 m, m > 2, it is necessary 

to verify this separately. We may assume ~, ~ N. By Proposition 3, there is a 

basis X~,"',X, of M such that Z2i- 1 U ~21 = 1 for 1 _< i _< �89 X~ u Xj = 0 for 

i < j  otherwise, and X2, X4 "",Z2,, s < �89 is a basis of N. Then as in the proof 

of Corollary 4, 

N J ' =  ~ BZ2,+ ~ BX,. 
I = 1  i = 2 s + l  

Since 

Write 

L, e N ' ,  xo = Xo + t/, XoeN, 0 # ~ / =  ~ biz~, b, e B .  
i = 2 s +  1 

rl = b~f, b = 21 = gcd{b2s+l, '"  b~}, 

so that ~ ' e  N "  and N' = N + BrI' is pure. To show that N'  is isotropic it suffices 

to show t/' u t / '  = 0. By the corollary to [6, Prop. 3], 

for every X e M. In particular X, U Zo = (~) go(a). On the other hand, X U Z, = X(a) 

for every X e M, so setting X = X,, Zo U ;G = go(a). Hence ( (g ) -  1) go(a) = 0, 

whence go(a) = 0. Let Xl', "", X" be a basis of M such that X~(a)= 6~t. (Such a 

basis exists since we extend a to a basis of G and take the dual basis.) Then 

l = { x  E M l x ( ~ )  = 0}  = BZ; + . . .  + BX'. 

We know that N ~_ a i and X,e a -L. It follows that r I = b~]' = ~, - Xo e a -L whence 

the coe~cient c~ of XI' in the expression t/' = 2~i~=1 ciX~' satisfies bc 1 = 0 since 

b~t'(<O = bc~ = O. 

Since b # 0, cx e 2B. But then 

n' u ~' = c, (x ,  u x:) = c, ~ x , (a )  = c l 2 
i = 1  ~=1  

(The first equality holds since c~cjxi'uX~ + cjc i Z/uX~'= 0.) Thus N + BXo is 

contained in a pure isotropic submodule N '  of M. 
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Now f2: S ~ H induces a monomorphism f*:  Hi(H,  B) -~ HI (S, B) and 

A = image f *  + BZ, 

= image f ' f2* + BZ, 

c N + B z ~  

c N'. 

Hence I(A) = 0. (Note that this part of the theorem is valid for H a pro p-group.) 

Conversely, suppose I(A) = 0. Then by Lemma 5, A is contained in a pure 

isotropic submodule N '  of M. By Proposition 3, there is a basis Xl "", Xn of M 

such that X2~-1 UX2~ = 1 for 1 <_i<_�89 X~uXj = 0 for i < j  otherwise, Z2, 

X4,"" X2s is a basis of N' ,  s < �89 and X2 = X~ if q 4 0. By virtue of  Burnside's 

basis theorem, let cq, ... a,  be a basis of G dual to ;(~ ..., Zn, X~, .." Xn a basis of F 

such that e(x~) = o'~ for 1 _< i < n as above. Then by Lemma 6, 

r = x~ [x i ,x2]  ... [x ,_ l ,x ,]  (modF2). 

We now proceed exactly as in proof  [6, Th. 3] : suppose 

r - x ]  [ x i , x 2 ]  ... [x,_1,x,] ( m o d F j )  j __> 2. 

By [6, Prop. 5], there exist h, "", t. e Fj_ 1 such that 

q 
r - Yi[Yl,  Y2] "'" [Y.-1,Y.] (modFj+ l )  

where 

Yi = xitT* ,1 - i -< n. 

Passing to the limit, we obtain a new basis o fF ,  which we also denote by xl,  ." ,  x,, 

such that 

(i) r = x~[xi, x2] ... [x ,_l ,x ,] ,  

(ii) the new 0-~ = e(xi) are still dual to Z1,"" ;(,. (At each step, y~ - xl (mod 

F1).) 

We now produce the factorization of f .  Let Yl , " ' ,  Y~r, be a basis of S and define 

f ; :  F - ~ S  by 

f;(x2~-1) = 1, fl'(x2~) = Yi, 1 < i < �89 

Then f~(r) = 1, and f~ induces an epimorphism f l  : G -~ S satisfying f~ = Ae. 
Define f2: S ~ H by 

f2(Yi) = f(azt),  1 < i < �89 
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1 < i < �89 fzfl(a2,) = f~Le(x2 ) = f2J;(x2,) = f2(Y,) = f(a2,), 

f2J 1(a2,- l) = fzf~(x2,-,) = f2(1) = 1. 

It follows that f = f2f ,  if and only iff(tr21_ t) = 1 for 1 < i < �89 If  H is abelian 

of exponent q, then an element z e l l  is equal to 1 if X'(z)= 0 for all Z ' e  

Horn n(H, B). For z = f(a2i- t), this condition amounts to 

f *Ht (n ,B)  c_ X (BxilJ # 2i - 1} 

since 

ZT(cr') = f*(x ' )(* ' )  for a ' ~  G. 

If  we now let i = 1, ..., �89 then f = f2f,  if and only if 

f*H'(H,B)  ~ Y~{Bx2, J 1 < i < �89 

But this is true since 

f*n'(n,n) = imagef*c_Ac_N'c_ X {Bz2,[ 1 <i<�89  Q.E.D. 

REMARK. If  G is the Galois group of the maximal p-extension k* of a local 

p-adic field k containing the pth roots of unity, and K is the fixed field of ker( f ) ,  

then I(A) is an arithmetic invariant of K. Namely, if K is abelian of exponent q 

(if not, replace K / k by the maximal abelian subextension K' /k  of exponent q) 

then by Kummer theory, K = k(DtlO, where D is a subgroup of k x (multiplicative 

group of k) containing k ~, and D TM is the set of all qth roots of elements of D. 

Note that q is the highest power of p such that k contains the qth roots of unity 

[6, Sect. 5]. We may as well replace D by D]k X'and write D _ J = kl  kx~. Each 

a e J determines a character 

as follows. Set 

Xa: G -~ W = qth roots of unity, 

~(a(tr) = a(a~/9 /a'/a ~ W. 

If  we fix an isomorphism between W and the additive group B = Zp/qZp, then 

a-~xo is an isomorphism between J and M = H~(G,B). Furthermore, if  

H = G(K/k) and f :  G ~ H  is the restriction map, then Ht(H,B)~-D and 

f * :  H~(H B ) ~  Ht(G,B) corresponds to the inclusion D--.J. Still further, the 

cup product M x M ~ B corresponds to the qth power norm residue symbol 
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J x J --, W [9, Chap. XIV]. Now since a generates the torsion part of G~ [G, G], a 

corresponds to some generator ~ of W_c k under the reciprocity isomorphism. 

Finally, Z~ is identified with Z~ relative to a suitable identification between W 

and B. To see this, we assume an arbitrary identification between W and B and 

show that B/.~ = BX~. Let Zt, "", X, be the basis of M of  Lemma 6, and let 

al, . . . ,a ,  ek*  such that X~ = to,, 1 _< i _< n. Since Z2 = Z~, by assumption, and 

X~ has order q, it suffices to show that Z~ L)X~ = 0 for 2 < i < n, since then 

X~ t = X~ = Z, a so that BZo = BZr Now •r wX, -- 0 , ~ (  is a norm from k(d[ q ) ~  

is in the kernel of the reciprocity map of the extension k(a~/e).~ a acts trivially on 

k(a~/q). (The reciprocity map commutes with the restriction K ~ k(a~/q)),~Xi(o ) 

= 0r _ i _ n since a -- al (mod [G, G].) 

Thus A = image f *  + BZ~ corresponds to the subgroup DW of  J = k*/k  *e, 

and the condition I ( A ) =  0 means that DW is contained in a pure isotropic 

submodule of J (with respect to the qth power norm residue symbol). 

We conclude with a remark on epimorphisms of G onto a free pro p-group S of 

rank =< �89 As we noted in the proof  of  Theorem 7, the existence of such an 

epimorphism implies rank S < �89 If  we denote G/G2, S i S  2 by G (2), S (2) respec- 

tively, an epimorphism h" G ~ S induces an epimorphism h':  G (2) ~ S (2), since 

h(G2) = $2. If  rank S = �89 and if a t , . "  an is a basis of G (2) satisfying 

a~l'ol a2] "" l 'a,-1, tr~] = 1, and y~ -..,y~, is a basis of  S (z), then any mapping 

which sends a2~_ 1 into St/$2, a2~ onto y,, for 1 < i < �89 defines an epimorphism 

of G ~2) onto S c2), since the left side of  the relation on a~, ..., an collapses to 1 

under the mapping. 

THEOREM 8. Let S be a free pro p-group, g: G (2) ~ S ~2) an epimorphism. Then 

rank S<�89 I f  rank S=�89 then there exists a basis a 1, ..., an of G c2~ satisfying 

a '~ [a l , a2 ] . . . [ an_ t , a , ]  = 1 and a basis Yt , '" ,Y�89 of S (2~ such that g(a21_t) 

e S t / S  2 and g(a2~) = Y~, for 1 < i < �89 

PROOF. Consider the diagram shown in Fig. 4 in which the vertical arrows are 

canonical and e ~2) is induced by e. The map from F onto S C2) defined by the 

h 
r ~, F e -~G S 
!(2) e{2)!(z)g .!(2) 

Fig. 4 
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diagram can be factored epimorphically through S; because a set of free generators 

of F map onto a set of generators of S (2). Using the Burnside basis theorem, it is 

easy to check that the preimages of these generators in S generate S, hence we can 

use them as images of the generators of F in defining the desired epimorphism 

h: F --+ S. By commutativity of the diagram, h(RFz) c Sz. 
Consider next the commutative diagram shown in Fig. 5 in which all the tg are 

isomorphisms (by Hochschild-Serre, for example the first tg is part of the 

Hochschild-Serre exact sequence 

HI(s  (2), B) --, Hi(S, B) --, H1(32, B) s - - ~  H2(S (2), B) --, H2(S, B) = O, 

in which the first arrow is an isomorphism, and the second and last are zero), h* 

is induced by h and is well defined since h[RFz, F] c_ [Sz, S]. 

h 
~ .  

Ht(S2,B) s = HI(RFz,B) F . HI(R,B) F 

l,o 1,o 
g** 

Hz(S (2) B) ,. HZ(G(Z),B) . HZ(G,B) 

Fig. 5 

Now to cup products. Consider the commutative diagram shown in Fig. 6 

where ~(a) = tg-l(a) (r-i) for a e H2(G, B), and similarly for the first two rows. 

HI(S(Z),B) x HI(S(2),B) 

I g% g" 
HI(G (2) ,B) x H I (G(2),B) 

HT(G,B) x !I(G,B) 

u . H2(S(2),19) h(r) B 

k" 1 
u .~ H2(G(2),B) 7 B 

u, ,,_ HZ(G,B) 7 ~- 8 

Fig. 6 

Since h(r)e $2, h(r) = 0. We may now extract the following information: the 

image of N of Ht(S (2), B) in M = HI(G, B) is an isotropic submodule of M; it is 

also pure, as in the proof of Theorem 7. Since N has rank �89 (Proposition 3) 
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N L = { x e M I x u r  1 = 0 for all r /eN} = N, 

where X u ~/again denotes the image f(X u 1/) of Z u ~/in B. 

Now if q # 0, let tr, X, be defined as above. Exactly as in the proof  of Theorem 7, 

we have 

X(<r) = X U X~ = 0 for ;~ e N, X~ e N" = N. 

By Proposition 2, there is a basis Xl, "", X, of  M such that ~2|-1 ~-j ~2i = I for 

1 --< i _ �89 Z~ L) Zj = 0 for i < j otherwise, Z2 -- Z~ if q ~ 0, and Z2, Z4, "", Z, is a 

basis of  N. Choose a basis a~,. . . ,a,  of G (2) dual to Xt, '",Zn. By Lemma 6, 

a ~ [ a , , a 2 ] . . . [ a , _ l , a J  = 1. Set Yl = g(a2i), 1 < i < � 8 9  and let rh,.. . ,r/~, be 

the basis of  HI(S (2), B) dual to Yx, "",Y~,. Then g*(rh)(aj)= rhg(aj)= 6j,2~ 

for l = < j < n ,  l < i < � 8 9  hence g*(rh)=X2~, l < i < � 8 9  y e S  (2) belongs to 

St /S2  if and only if ~/(y) = 0 for every t/~ HI(S (2), B). (It is clear that ~1($1/$2) = 0 

for every r/, and given y ~ S  (2), y has a unique expression [Ii~,  y ~ ' - z ,  

z e $1/$2, ai e B, hence i fy  ~ $1/$2, some ai ~ O, so r/i(y) = as ~ 0.) It follows that 

g ( f f 2 1 _ l ) ~ S l / S  2 for 1 < i < �89 since rljg(a2i_ 1) = (g*l~j)(172i_1) = Z2j (o ' 2 i_ l )  

= 0 for 1 < i, j < �89 Q.E.D. 

REMARK. If  rank S < �89 the situation is a bit more complicated. It can be 

verified that if rank S = s < �89 then a necessary and sufficient condition that 

there is a basis a l , " ' , ( r ,  of  G (2) satisfying a~[al, a2] ... [a ,_l ,a ,]  = 1 and a 

basis Yl, "", Y, of S (2) such that 

and 

is that 

g ( 1 7 2 i _ l ) E S 1 / S  2 for 1 _< i _< �89 g((72i ) = Yi for 1 _< i ~ s, 

g(a2i) ~ S , /S2  for s + 1 < i < �89 

g*HI(S (2), B) N BZ~ 

is either 0 or all of  BX,. 

REFERENCES 

1. E. Artin, Geometric Algebra, Interscicnce, New York, 1957. 
2. S. Demushkin, The group of the maximal p-extension of a local field, Izv. Akad. Nauk 

SSSR, Ser. Mat. 25 (1961), 329-346. 



190 J. SONN Israel J. Math. 

3. M. Hall, The Theory of Groups. Macmillan, New York, 1951. 
4. K. Hocchsmann, Zum Einbettungsproblem, J. Reine Angew. Math. 229 (1968), 81-106. 
5. K. Hoechsmann,/-extensions, Algebraic Number Theory, Thompson, Washington, D.C. 

1967, pp. 297-304. 
6. J. Labute, Classification of Demushkin groups, Canad. J. Math. 19 (1967), 106-132. 
7. J. P. Serre, Cohomologie Galoisienne, Springer-Verlag, Berlin, 1965. 
8. J. P. Serre, Structure de certainespro-p-groupes, Sere. Bourbaki (1963) Exp. 252. 
9. J. P. Serre, Corps Locaux, Hermann, Paris, 1962. 
10. I. R. Shafarevitch, On p-extensions, Amer. Math. Soc. Transl. (2) 4 (1956), 59-72. 

ISRAEL INSTITUTE OF TECHNOLOGY 
HAIFA, ISRAEL 


